
WAXweb: Toward Dynamic MOO-based VRML

Tom Meyer, David Blair, and D. Brookshire Conner
NSF/ARPA Science and Technology Center for
Computer Graphics and Scientific Visualization,

Brown University Site
twm@cs.brown.edu, artist1@interport.net, and dbc@cs.brown.edu

Abstract

We describe the structure and development of WAXweb, a dynamic
MOO-based hypermedia database which is being used as a VRML
server. We also discuss the future of 3D MUD-like systems, de-
scribing the particular problems of highly-interactive, distributed
3D scenes. So that we can begin to experiment with these areas
using commonly-available VRML browsers, this paper describes
several extensions for VRML 1.x which will allow for simple dy-
namic multiuser interactions.

1 Introduction

VRML [BPP95] was intended not only as a static 3D document for-
mat for the World-Wide Web, but also as a way to progress towards
the development of distributed, collaborative work and play areas.
Such ideas were inspired both by MUDs (Multi-User Domains),
which are shared text-based virtual spaces on the Internet, and by
the development of low-cost computers capable of interactive 3D
graphics.

1.1 MUDs
MUDs, or Multi-User Domains, evolved out of multi-player
Adventure-style games in the early 80s. These began as hack-and-
slash style games, but some of the MUDs began to evolve into more
social areas, somewhat reminiscent of chat lines. Although many of
the earlier systems relied on hard-coded behaviors, MUD systems
began to incorporate internal scripting languages. One particularly
flexible server, MOO (MUD Object-Oriented), is now being widely
used by the research community to support collaborative work, due
to the ease of modifying the environment to support scholarship and
sharing information.

The MOO server is distributed by Pavel Curtis as part of his
research at Xerox PARC, studying collaborative computer sys-
tems [CN93]. Although there continue to be a large number of
MOOs solely devoted to socializing, MOO systems have been es-
tablished at the MIT Media Lab (collaborative environment for me-
dia researchers), the University of Virginia (postmodern theorists),
CalTech (astronomers), and the Weizmann Institute of Science in
Israel (biologists).

1.2 History of WAXweb
WAXweb, at <http://bug.village.virginia.edu>, is
based on David Blair’s film, WAX or the Discovery of Television
Among the Bees, which was the first independent feature film
edited using a nonlinear editing system, and was broadcast over
the mbone (multimedia backbone) in 1992. The hypermedia ver-
sion was initially constructed using Storyspace, and then imported

into a MOO-based hypertext authoring system, as a large object-
oriented database. We use the MOO to dynamically serve HTML
documents from the underlying database, and deliver 3000 WWW
pages, containing 7000 pictures, many interleaving layers of seman-
tic indexing, 1 1/2 hours of MPEG video, and the entire audio of
the film in English, French, German, and Japanese [MBH94].

2 VRML Implementation

The original film had roughly more than ten minutes of computer-
generated imagery; we have taken 250 of the 3D models, originally
developed on an Amiga, and imported them as VRML models, to
serve as a spatial and contextual index to the multimedia data. All
the VRML scenes are generated dynamically, from the underlying
object-oriented database.

2.1 Object model

The underlying object model and programming language of the
MOO server [Cur93] encourage rapid exploration. It uses a
prototype-delegation object model with dynamic inheritance, which
we believe to be almost a necessity for any highly-interactive, flex-
ible environment. It incorporates a persistent object store, and new
objects and methods can be added while the server is running. Al-
though the language is not compiled, which causes some slowness
under extreme server load, we feel that the benefits from rapid proto-
typing and a cleaner integration of content and behavior far outweigh
the potential loss of speed. Additionally, any functions which are
called particularly often can be recoded into C and compiled into
the server.

Becauseof this, we were able to create a standard VRML method
which transforms the SGML-based representation of the content of
each page into a default VRML visualization. Although this is not
a perfect transformation, the majority of the pages of the database
now can be viewed as either plain text, HTML, or VRML.

2.2 Dynamic/Static optimization

Although it is useful for the database to be dynamically delivered
as VRML, delivering all the VRML from inside the MOO led to
extremely slow transfer rates. Since the majority of the VRML
objects consist of linked pieces of fairly static geometry, we adopted
a heterogeneous approach, where individual pieces of geometry (an
indexed face set, and its points) are extracted out into sub-files.
These files are placed on a separate HTTP server, for speed, while
the MOO dynamically assembles a set of WWWInlines pointing
to them. This allows the interpreted code to modify the linking
behaviors of the scene, as well as the relative transformations of
pieces of geometry, without sacrificing too much speed.



2.3 Integration of VRML, HTML, and MOOs
Because every page can be rendered as HTML or as VRML, users
can navigate through the multimedia database in HTML or VRML.
As an experimental feature, the server can also deliver multi-part
documents to a Netscape 1.1 browser. In this situation, the server
delivers a single document which encapsulates an HTML and a
VRML document; Netscape extracts the subparts and renders the
HTML, passing the VRML to a user-defined client.

By using the two browsers side-by-side, we provide for the nearly
seamless integration of HTML and VRML. By using a custom
Emacs client, users can travel through the MOO-based space and
see static HTML and VRML versions of each room that they are
visiting, while taking advantage of all the interactivity of the MOO.

3 Research Areas for VRML and MUDs

Of course, WAXweb is not the typical VRML-based MUD that peo-
ple envision when they start thinking about how one would build a
3D, multi-user interactive world. There are a number of reasons why
a typical MUD architecture is not appropriate for highly-interactive
3D scenes:

� little or no support for 3D or spatialized operations

� designed for relatively low-speed text throughput

� inability to load interpreted code and compile it as needed

� centralized server model, with a dumb client

For these reasons,we have chosen to explore less-obvious ways of
using a MUD, which still take advantage of their multi-participant
nature and underlying flexibility. However, each of these prob-
lems represents a useful research area for future work on highly-
interactive environments.

3.1 Spatialization of MUDs
Very few MUDs have a concept of a 3D coordinate system,and those
that support one tend to be oriented toward interstellar combat. For
example, the standard MOO server does not support floating-point
math operations, and has no concept of vector and matrix math.

Another problem is that most interactive operations are solely
oriented toward maintaining container relationships, e.g., “Bill, Sue
and a green table are in the room. An open book is on the table.”
It is of course possible to create a feasible 3D geometry and coor-
dinate transformation for each of the objects in a MUD, but it is
nevertheless a difficult task to do well. A better approach would
probably involve building a new database from scratch, and would
require a subtle combination of semantic and geometric modeling.

3.2 Throughput issues
MUDs are designed for relatively slow text entry and display, at a
rate of at most a few hundred characters per minute. 3D scenes not
only require more bandwidth to display and update than text-only
worlds, but users also generate much more rapid input, and expect
near-instantaneous responses to their actions.

Some of this could be dealt with by properly tuning servers for
rapid, high-bandwidth interaction, and by using multiple interaction
threads. Clients which maintain simple predictive models of the
world could also help a great deal in reducing lag times,and reducing
the bandwidth demands on the server.

3.3 Dynamic compilation of interpreted code
There are a few modern languages, such as Common Lisp, or Self,
for which it is common to prototype interpreted code. As this code
is executed more often without being modified, it can either be
automatically copiled into a faster form, or the user can choose to
compile it.

Without dynamic compilation, the more flexible, interpreted
interactive systems will always be substantially slower than the
special-cased, optimized systems. However, Self has shown that it
is capable of incrementally producing code which can run nearly as
fast as compiled C.

3.4 Centralized server model
Most MUDs use a centralized server, with a single copy of the
database keeping track of all modifications, and routing all mes-
sages between clients. As more users try to use these systems, the
bandwidth demands tend to increase linearly if all the users are par-
titioned into separate rooms, or as O(n2) if all users are able to see
what the others are doing, since all messages must go to all other
participants.

Although several distributed databasesystemsexist, they tend not
to be optimized for high-bandwidth interactive applications. These
systems all target high-reliability applications where updates happen
relatively slowly, such as in airline reservation systems. Dealing
with object migration and resource replication in an unreliable,
high-update environment is a particularly difficult problem.

4 Proposed extensions for VRML 1.x

A system which solved the problems outlined above would probably
include mechanisms for defining arbitrary new behaviors,and would
also use new transaction protocols, rather than the fairly limited and
stateless HTTP. However, such mechanisms will be very difficult to
agree upon, and some simple extensions to VRML will allows us to
begin to experiment with solving simple versions of those problems.

We would like to propose several extensions for VRML 1.x which
would be useful to support preliminary experiments with multi-
user interactive environments. Note that these are intended only as
extremely preliminary ways of coping with some of the problems
addressed above, and will not serve as a solution for large-scale,
multi-participant shared virtual worlds.

4.1 Server push of subtrees
At the present time, VRML describes a completely static scene,
expressed through a scene graph (a DAG). One of the simpler ways
to add dynamic behavior to a scene would be through allowing the
server to replace a subtree of the VRML description with a different
piece of VRML. This could allow for dynamically changing ge-
ometries, interpolating camera positions, or entirely new scenes to
be downloaded.

Netscape 1.1 introduced two preliminary extensions to the
HTTP protocol which would allow for such behavior [Com95].
In “server push,” the server sends a message of MIME type
multipart/x-mixed-replace, which defines an incoming
stream of messages, each of which will replace the previous one.
The client holds the socket open and waits for new types of media,
until the server or the user breaks the connection.

In “client pull”, the server sends an additional field in the HTTP
header, which notifies the client to reload this data at a specified
time in the future. Although this does not allow a server to send
data at a variable update rate, it has the benefit of not requiring that
each user constantly take up a valuable socket.

If VRML 1.x browsers could be guaranteed to support either
protocol, it would be possible to take a WWWInline node and
return a dynamic document.

As an example of a very simple dynamic behavior, consider
using server push to deliver a Translate node which immediately
precedes a cube. As the server replaced the translation node with
new ones, the cube could appear to animate. Several nodes could
be added to the graph to replace that single translation, so new
objects could appear and also move around. Since an inlined node



can currently contain any valid VRML scene graph, this simple
mechanism provides a great deal of the functionality that we will
require for MOO-like behaviors.

4.2 User-space objects
We would like to be able to define simple interfaces which remain
consistently positioned and oriented relative to the user. The HTML
3.0 specification [Rag95] calls such interfaces “Banners” in 2D, so
it might make sense to adopt this terminology, though it is not as
appropriate for 3D scenes.

Banner {
Cube {}

}

The coordinates in a Banner are defined such that the unit square
with corners at (-1,-1,0) and (1,1,0) will always fit within the viewing
window.

4.3 Multimedia types
Although VRML has support for incorporating text and 2D images
into the 3D scene, it does not have methods for including audio and
video streams. Being able to handle such input will prove important,
not only for environmental effects (bird songs, soundtracks, sunsets,
television screens), but also for the eventual incorporation of live
audio and video streams, to allow for virtual teleconferencing.

Fast dynamic texture maps are currently possible on either high-
end graphics workstations or PCs,and the ubiquity of software video
decoders and inexpensive teleconferencing equipment will make
this one of the more interesting VRML applications. For video
streams which contain synchronized audio data, we will also need
to specify the characteristics of the associated audio. Since these
media have common attributes, we propose new attribute nodes to
control these attributes.

4.3.1 Media attribute nodes
A small set of useful attributes include playback rate, play-

back volume, whether playback is proceeding or not, and whether
playback should be looped or not. We suggest the names
PlaybackRate, PlaybackVolume, PlaybackRunning,
PlaybackLooping, and PlaybackStartTime. Each has
an optional name, and a field describing appropriate parameters.
These attributes are specified as different nodes so that they can
be set independently (e.g., turning on all media independent of
whether any media are looped or not). A sixth node collects all of
these attributes: PlaybackAttributes.

The PlaybackRate node has one field, rate, containing a
floating point value used to multiply the native playback rate of
media. The default rate is thus 1, indicating that media should
proceed at their normal rate. A rate of 0.5 halves the playback rate,
so that it takes twice as long to display the media in its entirety.
A rate of 2 would double the playback rate. Note that a rate of -1
would indicate playing back in the reverse direction.

PlaybackRate {
name "" # SFString
rate 1 # SFFloat

}

The PlaybackVolume node has one field, volume, contain-
ing a floating point value used to multiply the volume of any audio
media. As with rate, the default volume is thus 1, playing the
media at normal volume.

PlaybackVolume {
name "" # SFString
volume 1 # SFFloat

}

The PlaybackRunning node has one field, on, containing a
SFBool used to determine whether audio or video media should
play back. A value of TRUE (the default) indicates that any sound
will be playing and any video will be playing. A value of FALSE
indicates that any audio or video will not play back.

PlaybackRunning {
name "" # SFString
on 1 # SFBool

}

The PlaybackLooping node has one field, looping, con-
taining a SFEnum value which can be one of several values.
ONCE indicates that a sound or video should play once and
then stop. END_TO_END indicates that media should play con-
tinuously, restarting at the beginning when finished. Finally,
BACK_AND_FORTH indicates that media should play continuously
by reversing playback direction when the end is reached.

PlaybackLooping {
name "" # SFString
looping ONCE # SFEnum

}

The PlaybackStartTime node specifies where in the media
playback should begin. It contains two fields, absolute and
time. The field absolute is a SFBool field that describes
whether the time field represents absolute or relative media time.
TRUE (the default) indicates that time specifies an absolute time
in seconds. FALSE indicates that time specifies a start time as a
fraction of the duration of the media (with 0 being the beginning
and 1 being the end). The start time is used when media are first
displayed and whenever PlaybackRunning becomes TRUE.

PlaybackStartTime {
name "" # SFString
absolute TRUE # SFBool
time 0 # SFFloat

}

Finally, the PlaybackAttributes node collects all of these
attributes in one node as a convenience.

PlaybackAttributes {
name "" # SFString
rate 1 # SFFloat
volume 1 # SFFloat
on 1 # SFBool
looping ONCE # SFEnum
absolute TRUE # SFBool
time 0 # SFFloat

}

4.3.2 Using WWWInline with other media
It might seem desireable to specify new “geometry” nodes cor-

responding to new media types. However, a WWWInline node is
sufficient, except that the specification for VRML 1.0 indicates that
the effect of a WWWInline that does not refer to VRML is unde-
fined. We would thus like to propose clarifications for the behavior
of a WWWInline, based on MIME major media types.

The six major types are text, message, multipart,
application, image, audio, and video. We will now out-
line ways to present these media in a VRML scene in a manner
that strives to integrate the media with the 3D environment. Note
that we describe methods of dealing with all the types for the sake
of completeness; we feel that the most important major types to
implement are image, audio, and video.

� text andmessagemajor types represent text-based content.
We suggest that these be handled by displaying them in a
window centered at the origin as transformed by the current
transformation. As a browser option, this window may be



either a screen-aligned window or a 3D window spanning
1� 1 square in the xy plane, transformed appropriately.

� multipart media represent messages in several parts. We
have already discussed Netscape’sx-mixed-replace mi-
nor type. Others should be handled suitably. Note that
alternate can be implemented using a Switch.

� application media must, by their nature, be handled on
a case-by-case basis. We recommend that, as a suggested
implementation, the applications be embedded in the VRML
scene (e.g., by texturing output on to a polygon).

� image media can of course be used as textures. When used as
aWWWInline, we suggest that they be textured automatically
onto a 1�1 square in the xy plane. They should fit within this
square but their aspect ratio should be preserved. This plane
should be transformed by the current aspect ratio.

� audio media should be played according to the playback at-
tributes described above. In addition, they should be spatially
located at the origin, and transformed accordingly. A browser
may not be able to perform a true sound spatialization. If this
is the case, it is recommended that the volume be modified
to account for the distance from the sound’s position to the
camera (i.e., distant sounds are quieter).

� video media should also be played according to the play-
back attributes. The image component should be displayed
in a textured manner as if it were image media. The audio
component should be treated in a spatialized manner as if it
were audio media.

4.3.3 Implementation notes
We have implemented a prototype texture-mapped MPEG de-

coder on a SGI Onyx with Reality Engine 2, and find that it renders
in real-time, even with a fairly naive implementation. Since several
PC graphics libraries already provide dynamic texture mapping and
have robust support for multimedia, it may not be difficult to bring
such capabilities to PC- and Mac-based browsers.

In addition, the playback attributes can be implemented in a
straightforward fashion using Open Inventor (a common implemen-
tation of VRML browsers). Each attribute can be defined as a new
Element in the Inventor traversal state. New media can be defined
as new Nodes in Inventor, using Inventor utilities and nodes (such
as texturing and accumulating transformations) to perform the spa-
tializations and image texturing described above. TheWWWInline
node can then instantiate a suitable node based on the MIME type
of a downloaded document.

5 Conclusions

It is currently possible to generate simple, static renderings of MUD-
like scenes in VRML, but it will not be possible to have dynamic up-
dates of these scenes without extending VRML in minor ways. We
have presented what we feel is a simple way to add a large amount
of dynamic, multi-participant behavior to these worlds without ex-
cessive modifications to the VRML 1.0 specification.

6 Acknowledgements

Thanks to the Brown University Graphics Group,especially Andries
van Dam, John F. Hughes, David Klaphaak, Suzanne Hader, Emma
Johnson, Laura Mullen, and Brook Conner. Henry Fuchs and Greg
Turk from the University of North Carolina provided impetus for
the integration of video in the VRML spec. John Unsworth of
the Institute for Advanced Technology in the Humanities at the
University of Virginia provided a machine and disk space. Thanks

to Mark Pesce, Jan Hardenburgh, and the Open Inventor Group at
SGI for their discussions and early bug-testing of WAXweb.

This work was supported in part by grants from NSF, ARPA,
NASA, IBM, Taco, Sun, SGI, HP, Microsoft, Xing, OKI, ONR
grant N00014-91-J-4052, ARPA order 8225, and the New York
State Council for the Arts.

References

[BPP95] Gavin Bell, Anthony Parisi, and Mark Pesce.
The Virtual Reality Modeling Language Version
1.0 Specification. http://vrml.wired.com
/vrml.tech/vrml10-3.html, 1995.

[CN93] Pavel Curtis and David A. Nichols. MUDs Grow
Up: Social Virtual Reality in the Real World. In
Proceedings of the Third International Conference on
Cyberspace, 1993. ftp://parcftp.xerox.com
/pub/MOO/papers/MUDsGrowUp.ps.

[Com95] Netscape Communications. An Exploration of Dy-
namic Documents. http://home.netscape.com
/assist/net_sites/pushpull.html, 1995.

[Cur93] Pavel Curtis. LambdaMOO Pro-
grammers Manual. ftp://parcftp.xerox.com
/pub/MOO/ProgrammersManual.texinfo_toc.html,
1993.

[MBH94] Tom Meyer, David Blair, and SuzanneHader. WAXweb:
A MOO-based Hypermedia System for WWW. In
Proceedings of the Second International WWW Con-
ference, 1994. http://www.ncsa.uiuc.edu
/SDG/IT94/Proceedings/VR/meyer.waxweb
/meyer.html.

[Rag95] Dave Raggett. HyperText Markup Language, Version
3.0. Internet Draft, 1995. http://www.w3.org
/hypertext/WWW/MarkUp/html3/CoverPage.html.


